Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1336821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357445

RESUMEN

Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos , Infecciones Estafilocócicas , Animales , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fagos de Staphylococcus
2.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860845

RESUMEN

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Monóxido de Carbono , Medicamentos Herbarios Chinos , Isotiocianatos , Sulfóxidos , Ratas , Animales , Simulación del Acoplamiento Molecular , Monóxido de Carbono , Proteínas Quinasas Activadas por AMP , Farmacología en Red , Encéfalo
3.
BMC Chem ; 17(1): 182, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093361

RESUMEN

Fraxinus hubeiensis is a plant endemic to China and widely used as folk medicine to treat various diseases. However, its chemical constituents have never been reported sufficiently. Thus, the primary objective of this study was to investigate the phytochemical constituents and biological activities of F. hubeiensis leaves. Hence, combined column chromatographic and spectroscopic techniques were used to identify and characterize the secondary metabolites such as a pair of 3-keto-glycoside epimers (1) and (2), along with five known compounds (3 ~ 7). The results of α-glucosidase inhibitory activity exhibited that 1 and 2 had moderate activity with IC50 values of 359.50 and 468.43 µM, respectively, compared to a positive control acarbose with the IC50 value of 164.08 µM. However, Compounds 1-6 were shown to be inactive against the tested microbes.

4.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138447

RESUMEN

Ampelopsis grossedentata is a valuable medicinal and edible plant, which is often used as a traditional tea by the Tujia people in China. A. grossedentata has numerous biological activities and is now widely used in the pharmaceutical and food industries. In this study, two new flavonoids (1-2) and seventeen known compounds (3-19) were isolated and identified from the dried stems and leaves of A. grossedentata. These isolated compounds were characterized by various spectroscopic data including mass spectrometry and nuclear magnetic resonance spectroscopy. All isolates were assessed for their α-glucosidase inhibitory, antioxidant, and hepatoprotective activities, and their structure-activity relationships were further discussed. The results indicated that compound 1 exhibited effective inhibitory activity against α-glucosidase, with an IC50 value of 0.21 µM. In addition, compounds 1-2 demonstrated not only potent antioxidant activities but also superior hepatoprotective properties. The findings of this study could serve as a reference for the development of A. grossedentata-derived products or drugs aimed at realizing their antidiabetic, antioxidant, and hepatoprotective functions.


Asunto(s)
Ampelopsis , Antioxidantes , Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , Ampelopsis/química , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/química , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología
5.
Pharm Biol ; 61(1): 1108-1119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37462387

RESUMEN

CONTEXT: Dihydromyricetin (DMY) is extracted from vine tea, a traditional Chinese herbal medicine with anti-cancer, liver protection, and cholesterol-lowering effects. OBJECTIVE: This study investigated the mechanism of DMY against hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Potential DMY, HCC, and cholesterol targets were collected from relevant databases. PPI networks were created by STRING. Then, the hub genes of co-targets, screened using CytoHubba. GO and KEGG pathway enrichment, were performed by Metascape. Based on the above results, a series of in vitro experiments were conducted by using 40-160 µM DMY for 24 h, including transwell migration/invasion assay, western blotting, and Bodipy stain assay. RESULTS: Network pharmacology identified 98 common targets and 10 hub genes of DMY, HCC, and cholesterol, and revealed that the anti-HCC effect of DMY may be related to the positive regulation of lipid rafts. Further experiments confirmed that DMY inhibits the proliferation, migration, and invasion of HCC cells and reduces their cholesterol levels in vitro. The IC50 is 894.4, 814.4, 467.8, 1,878.8, 151.8, and 156.9 µM for 97H, Hep3B, Sk-Hep1, SMMC-7721, HepG2, and Huh7 cells, respectively. In addition, DMY downregulates the expression of lipid raft markers (CAV1, FLOT1), as well as EGFR, PI3K, Akt, STAT3, and Erk. DISCUSSION AND CONCLUSION: The present study reveals that DMY suppresses EGFR and its downstream pathways by reducing cholesterol to disrupt lipid rafts, thereby inhibiting HCC, which provides a promising candidate drug with low toxicity for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Farmacología en Red , Receptores ErbB
6.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2767-2780, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282937

RESUMEN

The chemical compositions of Rodgersia aesculifolia were isolated and purified using a combination of silica gel, reverse phase silica gel, Sephadex LH-20 column chromatography, and semi-preparative HPLC. The structures were determined according to the physicochemical properties and spectroscopic data. The MTT method and the ABTS kit were used to measure the cytotoxicity and antioxidant capacity of all isolates, respectively. Thirty-four compounds were isolated from R. aesculifolia and elucidated as stigmastane-6ß-methoxy-3ß,5α-diol(1), stigmastane-3ß,5α,6ß triol(2), ß-sitosterol(3), ß-daucosterol(4), stigmast-4-en-3-one(5), bergenin(6), 11-ß-D-glucopyranosyl-bergenin(7), 11-O-galloybergenin(8), 1,4,6-tri-O-galloyl-ß-D-glucose(9), gallic acid(10), 3,4-dihydroxybenzoic acid methyl ester(11), ethyl gallate(12), ethyl 3,4-dihydroxybenzoate(13), caffeic acid ethyl ester(14), p-hydroxybenzeneacetic acid(15), 4-hydroxybenzoic acid(16), 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one(17), 3,7-dimethyl-2-octene-1,7-diol(18), crocusatin-B(19), neroplomacrol(20), geniposide(21), 3-hydroxyurs-12-en-27-oic acid(22), 3ß-trans-p-coumaroyloxy-olean-12-en-27-oic acid(23), aceriphyllic acid G(24), isolariciresinol(25), trans-rodgersinine B(26), cis-rodgersinine A(27), neo-olivil(28),(7S,8R)-dihydro-3'-hydroxy-8-hydroxy-methyl-7-(4-hydroxy-3-methoxy phenyl)-1'-benzofuranpropanol(29), 5,3',4'-trihydroxy-7-methoxyflavanone(30), quercetin 3-rutinoside(31), catechin-[8,7-e]-4ß-(3,4-dihydroxy-phenyl)-dihydro-2(3H)-pyranone(32), ethyl α-L-arabino-furanoside(33), and l-linoleoylglycerol(34). One new compound was discovered(compound 1), 25 compounds were first isolated from R. aesculifolia, and 22 compounds were first isolated from the Rodgersia plant. The results indicated that compounds 22-24 possessed cytotoxicity for HepG2, MCF-7, HCT-116, BGC-823, and RAFLS cell lines(IC_(50) ranged from 5.89 µmol·L~(-1) to 20.5 µmol·L~(-1)). Compounds 8-14 and 30-32 showed good antioxidant capacity, and compound 9 showed the strongest antioxidant activity with IC_(50) of(2.00±0.12) µmol·L~(-1).


Asunto(s)
Antioxidantes , Raíces de Plantas , Antioxidantes/farmacología , Antioxidantes/análisis , Gel de Sílice/análisis , Raíces de Plantas/química
7.
Microbiol Spectr ; 10(6): e0227222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36413019

RESUMEN

Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins.


Asunto(s)
Acinetobacter , Camellia , Saponinas , Gorgojos , Animales , Gorgojos/genética , Gorgojos/microbiología , Acinetobacter/genética , Camellia/genética , Saponinas/metabolismo , Transcriptoma , Larva/microbiología , Insectos , Bacterias/genética , Perfilación de la Expresión Génica , Genómica , Té/metabolismo
8.
Chin Herb Med ; 14(2): 210-233, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36117671

RESUMEN

The genus Tetrastigma belongs to the Vitaceae family and contains over 100 species. This paper reviewed folk uses, chemical constituents, pharmacological activities, and clinical applications of the medicinal plants in the genus Tetrastigma. In addition, the paper also discussed the current problems for the further studies. Up to now, more than 240 compounds were reported from the genus Tetrastigma, covering 74 flavonoids, 14 terpenoids, 19 steroids, 21 phenylpropanoids, 14 alkaloids and others constituents. Among them, flavonoids are the major and the characteristic chemical constituents in this genus. Modern pharmacological studies and clinical practice showed that the extracts and chemical constituents of Tetrastigma species possessed wide pharmacological activities including antitumor, antioxidative, hepatoprotective, antiviral, anti-inflammatory, and analgesic activities. The information summarized in this paper provides valuable clues for new drug discovery and an incentive to expand the research of genus Tetrastigma.

9.
Pharm Biol ; 60(1): 774-784, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35361038

RESUMEN

CONTEXT: Tadehagi triquetrum (Linn.) Ohashi (Fabaceae) (TT), is a traditional herbal medicine used especially in China's ethnic-minority communities, such as the Zhuang, Dai, Li and Wa aeras. As an ethnic medicine, it has long been used to treat various diseases. OBJECTIVE: This review summarised the phytochemical and pharmacological progress on TT from 1979 to October, 2021 by highlighting its chemical classification, structural features, pharmacological applications and folk applications to provide inspirations and suggestions for accelerating further research of this traditional phytomedicine. METHODS: The information on TT in this article has been obtained using these multiple scientific databases including Scifinder, Web of Science, ScienceDirect, Wiley, ACS publications, Springer, PubMed, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar and Baidu Scholar. Some information was also collected from classic literature on traditional Chinese medicines. RESULTS: More than 70 compounds have been isolated and reported from TT to date by the comprehensive analysis of the current literature. A large number of traditional uses and pharmacological studies have exhibited diversified bioactivities of various TT extracts and its metabolites, including anti-inflammatory, antimicrobial, anti-hepatitis B virus, hepatoprotective, insecticidal, etc. CONCLUSIONS: As a famous traditional medicine with a long history, TT has various medicinal uses and some of them have been supported by modern pharmacological researches. Further detailed studies on the action mechanisms, pharmacodynamics and structure-function relationships of single compounds or active constituents from TT are also required.


Asunto(s)
Fabaceae , Fitoterapia , China , Etnofarmacología , Medicina Tradicional China
10.
BMC Infect Dis ; 22(1): 344, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387590

RESUMEN

BACKGROUND: The Yinzhou Center for Disease Prevention and Control (CDC) in China implemented an integrated health big data platform (IHBDP) that pooled health data from healthcare providers to combat the spread of infectious diseases, such as dengue fever and pulmonary tuberculosis (TB), and to identify gaps in vaccination uptake among migrant children. METHODS: IHBDP is composed of medical data from clinics, electronic health records, residents' annual medical checkup and immunization records, as well as administrative data, such as student registries. We programmed IHBDP to automatically scan for and detect dengue and TB carriers, as well as identify migrant children with incomplete immunization according to a comprehensive set of screening criteria developed by public health and medical experts. We compared the effectiveness of the big data screening with existing traditional screening methods. RESULTS: IHBDP successfully identified six cases of dengue out of a pool of 3972 suspected cases, whereas the traditional method only identified four cases (which were also detected by IHBDP). For TB, IHBDP identified 288 suspected cases from a total of 43,521 university students, in which three cases were eventually confirmed to be TB carriers through subsequent follow up CT or T-SPOT.TB tests. As for immunization screenings, IHBDP identified 240 migrant children with incomplete immunization, but the traditional door-to-door screening method only identified 20 ones. CONCLUSIONS: Our study has demonstrated the effectiveness of using IHBDP to detect both acute and chronic infectious disease patients and identify children with incomplete immunization as compared to traditional screening methods.


Asunto(s)
Dengue , Tuberculosis , Macrodatos , Niño , China/epidemiología , Humanos , Tamizaje Masivo , Tuberculosis/diagnóstico
11.
Microbiol Spectr ; 10(1): e0232421, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019691

RESUMEN

Plant secondary metabolites (PSMs) can affect the structures and functions of soil microbiomes. However, the core bacteria associated with PSMs, and their corresponding functions have not been explored extensively. In this study, soil physicochemical properties, tea saponin (TS) contents, microbial community compositions, and microbial community functions of different-age Camellia oleifera plantation soils from representative regions were analyzed. We evaluated the effects of plantation age increase on PSM accumulation, and the subsequent consequences on the structures and functions of soil microbiomes. Plantation ages increase positively correlated with accumulated TS contents, negative effects on soil physicochemical properties, and soil microbiome structures and functions. Clearly, the core functions of soil microbiomes transitioned to those associated with PSM metabolisms, while microbial pathways involved in cellulose degradation were inhibited. Our study systematically explored the influences of PSMs on soil microbiomes via the investigation of key bacterial populations and their functional pathways. With the increase in planting years, increased TS content simplified soil microbiome diversity, inhibited the degradation of organic matter, and enriched the genes related to the degradation of TS. These findings significantly advance our understanding on PSMs-microbiome interactions and could provide fundamental and important data for sustainable management of Camellia plantations. IMPORTANCE Plant secondary metabolites (PSMs) contained in plant litter will be released into soil with the decomposition process, which will affect the diversity and function of soil microbiomes. The response of soil microbiomes to PSMs in terms of diversity and function can provide an important theoretical basis for plantations to put forward rational soil ecological management measures. The effects of planting years on PSM content, soil physicochemical properties, microbial diversity, and function, as well as the interaction between each index in Camellia oleifera plantation soil are still unclear. We found that, with planting years increased, the accumulation of tea saponin (TS) led to drastic changes in the diversity and function of soil microbiomes, which hindered the decomposition of organic matter and enriched many genes related to PSM degradation. We first found that soil bacteria, represented by Acinetobacter, were significantly associated with TS degradation. Our results provide important data for proposing rational soil management measures for pure forest plantations.


Asunto(s)
Bacterias/aislamiento & purificación , Camellia sinensis/química , Camellia sinensis/metabolismo , Microbiota , Saponinas/análisis , Bacterias/clasificación , Bacterias/genética , Camellia sinensis/crecimiento & desarrollo , Saponinas/metabolismo , Metabolismo Secundario , Suelo/química , Microbiología del Suelo
12.
Environ Toxicol ; 37(3): 413-434, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34761859

RESUMEN

The pathogenesis of brain injury caused by carbon monoxide poisoning (COP) is very complex, and there is no exact and reliable treatment in clinic. In the present study, we screened the therapeutic target and related signal pathway of Salvia Miltiorrhiza for acute COP brain injury, and clarified the pharmacological mechanism of multicomponent, multitarget, and multisignal pathway in Salvia Miltiorrhiza by network pharmacology. To further verify the therapeutic effect of Salvia Miltiorrhiza on acute brain injury based on the results of network analysis, a total of 216 male healthy Sprague Dawley rats were collected in the present study and randomly assigned to a normal control group, a COP group and a Tanshinone IIA sulfonate treatment group (72 rats in each group). The rat model of acute severe COP was established by the secondary inhalation in a hyperbaric oxygen chamber. We found that Salvia Miltiorrhiza had multiple active components, and played a role in treating acute brain injury induced by COP through multiple targets and multiple pathways, among them, MAPK/ERK1/2 signaling pathway was one of the most important. COP can start apoptosis process, activate the MAPK/ERK1/2 signaling pathway, and promote the expression of VEGF-A protein and the formation of brain edema. Tanshinone IIA can effectively inhibit apoptosis, up-regulate the expressions of VEGF-A, P-MEK1/2 and P-ERK1/2 proteins, thereby protect endothelial cells, promote angiogenesis and microcirculation, and finally alleviate brain edema.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Monóxido de Carbono , Salvia miltiorrhiza , Animales , Lesiones Encefálicas/tratamiento farmacológico , Intoxicación por Monóxido de Carbono/tratamiento farmacológico , Células Endoteliales , Internet , Masculino , Ratas , Ratas Sprague-Dawley
13.
Nat Prod Res ; 36(12): 3031-3042, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34498975

RESUMEN

Five new glycosides including mimenghuasu A and B (1-2), isolinarin (3), cyclocitralosides A and B (4-5), along with forty-seven known compounds were isolated from the flower buds of Buddleja officinalis. These structures were elucidated by extensive spectroscopic analysis (UV, IR, 1 D, 2 D NMR, and MS spectra). The anti-inflammatory activities of the isolated compounds were determined by enzyme-linked immunosorbent assay (ELISA) on the expression of TNF-α (LPS-activated RAW264.7 cells) and MTT experiment on LPS-induced HUVECs proliferation effects. Good suppressive effects on the expression of TNF-α were shown by 4 and 5 with IC50 values of 19.35 and 22.10 µM, respectively, compared to positive control indomethacin (IC50 16.40 µM). In addition to this, some isolated compounds exhibited excellent antioxidant activities including compounds 16, 18, 29, 39, and 47 (IC50 µM: 82.59, 72.94, 33.65, 46.67, and 20.81, respectively) with almost the same or stronger potency with reference to vitamin C as positive control (IC50 81.83 µM).


Asunto(s)
Buddleja , Antiinflamatorios/química , Antioxidantes/química , Buddleja/química , Flores/química , Lipopolisacáridos/farmacología , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa
14.
Front Pharmacol ; 12: 750147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867358

RESUMEN

An overload of hepatic fatty acids, such as oleic acid is a key trigger of non-alcoholic fatty liver disease (NAFLD). Here, we investigated whether Artemisia frigida, a valuable traditional medicine used to treat various diseases, could mitigate OA-induced lipid accumulation in HepG2 cells. Then, to identify the active substances in A. frigida, a phytochemistry investigation was conducted using a bioassay-guided isolation method. Consequently, one terpene (1) and one flavone (2) were identified. Compound 1 ((+)-dehydrovomifoliol) exhibited potent effects against lipid accumulation in OA-induced HepG2 cells, without causing cyto-toxicity. Notably, treatment with (+)-dehydrovomifoliol decreased the expression levels of three genes related to lipogenesis (SREBP1, ACC, and FASN) and increased those of three genes related to fatty acid oxidation (PPARα, ACOX1, and FGF21). In addition, similar results were observed for SREBP1, PPARα, and FGF21 protein levels. The effects of (+)-dehydrovomifoliol were partially reversed by treatment with the PPARα antagonist GW6471, indicating the important role of the PPARα-FGF21 axis in the effects of (+)-dehydrovomifoliol. Based on its effects on hepatic lipogenesis and fatty acid oxidation signaling via the PPARα-FGF21 axis, (+)-dehydrovomifoliol isolated from A. frigida could be a useful early lead compound for developing new drugs for NAFLD prevention.

16.
Pilot Feasibility Stud ; 7(1): 126, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130752

RESUMEN

BACKGROUND: Although rarely indicated, antibiotics are commonly used for acute diarrhoea in China. We conducted a randomised, double blind exploratory clinical trial of loperamide, berberine and turmeric for treatment of acute diarrhoea. METHODS: Adults with acute uncomplicated diarrhoea aged 18 to 70 were randomised to 4 groups: (A) loperamide; (B) loperamide and berberine; (C) loperamide and turmeric; (D) loperamide, berberine and turmeric. All participants were given rescue ciprofloxacin for use after 48 h if symptoms worsened or were unimproved. Primary endpoints were feasibility and ciprofloxacin use during the 2-week follow-up period. Semi-structured interviews were conducted following recruitment and were analysed thematically. Recruiting doctors, delivery pharmacists and research assistants were blinded to treatment allocation. RESULTS: Only 21.5% (278/1295) of patients screened were deemed eligible, and 49% (136/278) of these consented and were entered into the final analysis. Most participants had mild symptoms, because most patients with moderate or severe symptoms wanted to be given antibiotics. Follow-up was good (94% at 2 weeks). Only three participants used rescue antibiotics compared to 67% of acute diarrhoea patients in the hospital during the recruitment period. The median symptom duration was 14 h in group B (interquartile range (IQR) 10-22), 16 h in group D (IQR 10-22), 18 h in group A (IQR 10-33) and 20 h in group C (IQR 16-54). Re-consultation rates were low. There were no serious treatment-related adverse events. Most interviewed participants said that although they had believed antibiotics to be effective for diarrhoea, they were surprised by their quick recovery without antibiotics in this trial. CONCLUSION: Although recruitment was challenging because of widespread expectations for antibiotics, patients with mild diarrhoea accepted trying an alternative. The three nutraceuticals therapy require further evaluation in a fully powered, randomised controlled trial among a broader sample. TRIAL REGISTRATION: ChiCTR-IPR-17014107.

17.
J Nat Med ; 75(4): 1014-1020, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34032990

RESUMEN

Two previously undescribed dibenzocyclooctadiene lignans, named sieverlignans D-E (1-2), as well as eight known ones (3-10), were isolated from the aerial parts of Artemisia sieversiana. Their structures were elucidated from extensive spectroscopic analysis, including HRMS, NMR and electronic circular dichroism (ECD) experiments. This study is the first to report dibenzocyclooctadiene lignans in the genus Artemisia and this plant. All the compounds were evaluated for their anti-neuroinflammatory activities on the lipopolysaccharides (LPS)-induced nitric oxide production in BV-2 murine microglial cells. Compounds 1 and 6 exhibited the moderate activities with their IC50 values of 47.7 and 21.9 µM, compared to a positive control quercetin with the IC50 value of 16.0 µM.


Asunto(s)
Artemisia , Lignanos , Animales , Antiinflamatorios/farmacología , Ciclooctanos , Lignanos/farmacología , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Óxido Nítrico
18.
Nat Prod Res ; 35(21): 3528-3534, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31937140

RESUMEN

Two new ditetrahydrofuran lignans, named sieverlignans A and B (1 and 2), together with six known ones (3-8), were isolated from the aerial parts of Artemisia sieversiana. Their structures were established on the basis of spectroscopic analysis including HRMS, NMR spectra and circular dichroism experiments. All the compounds were evaluated for their anti-neuroinflammatory effects on the lipopolysaccharides (LPS)-induced nitric oxide production in BV-2 murine microglial cells. Compound 2 exhibited the significant activity with its IC50 value of 11.9 ± 0.8 µM, respectively, compared to a positive control quercetin with its IC50 value of 16.0 ± 1.1 µM.


Asunto(s)
Artemisia , Lignanos , Animales , Lignanos/farmacología , Lipopolisacáridos/farmacología , Ratones , Microglía , Estructura Molecular , Óxido Nítrico
19.
Soc Sci Med ; 256: 113035, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32442877

RESUMEN

Although non-prescription antibiotic dispensing (NPAD) has been officially forbidden by the Chinese government since 2004, it is still a common practice throughout the country. In this study, we use China as an example to explore the determinants of NPAD within the framework of its health system from a socio-ecological perspective. A mixed-method combining the simulated client method (SCM) and key informant interviews conducted in Zhejiang, Hubei, and Sichuan provinces was adopted. 73.3% of the SCM interactions engendered NPAD (91.7% through antibiotic requests vs. 55% through consultation) in Chinese community pharmacies; a much higher rate than the global average. At the intrapersonal level, NPAD was found to be driven by profits from selling non-prescription antibiotics and traditional Chinese medicine. At the interpersonal level, NPAD was driven by fierce competition in the community pharmacy market and by customers' unreasonable expectations. At the institutional level, it is easy for community pharmacies to evade the Food and Drug Administration's (FDA) supervision by obtaining unsupervised and fake prescriptions, refusing to give customers sale receipts, and hiding their antibiotic supplies and sale records. At the policy level, the low cost of violating the prescription-only antibiotic sale regulation and poor FDA supervision facilitated NPAD. The Chinese health system has thus failed to establish and regulate a diverse network of pharmacies for patients to fill their prescriptions; few antibiotic prescriptions are transferred from hospitals to community pharmacies. Education campaigns to increase awareness about the risks of self-medication with antibiotics among the general public, recognizable standardize prescriptions for customers to fill their prescriptions in community pharmacies, regulations on Internet and private clinic doctors' antibiotic prescribing behaviors, electronic tracking and tracing system to purchases and sales data of antibiotics and other prescription drugs, increasing cost of violating the prescription-only regulations for antibiotics sales are expected interventions to reduce NPAD.


Asunto(s)
Antibacterianos , Farmacias , Antibacterianos/uso terapéutico , China , Prescripciones de Medicamentos , Humanos , Prescripciones , Automedicación
20.
Biomolecules ; 10(1)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906487

RESUMEN

The phytochemical investigation of Fraxinus hupehensis led to the isolation and characterization of ten compounds which were identified as fraxin (1), fraxetin (2), esculetin (3), cichoriin (4), euphorbetin (5), kaempferol-3-O-ß-rutinoside (6), oleuropein (7), linoleic acid (8), methyl linoleate (9), and ß-sitosterol (10). Structures of the isolated constituents were characterized by 1H NMR, 13C NMR and HRMS. All the compounds, except compounds 3 and 4, were isolated for the first time from this plant. Further, this was the first report for the occurrence of compound 5 in the Fraxinus species. Antifungal activity evaluation showed that compound 2 exhibited significant inhibitory effects against Bipolaris maydis, Sclerotium rolfsii, and Alternaria solani with EC50 values of 0.31 ± 0.01 mmol/L, 10.50 ± 0.02 mmol/L, and 0.40 ± 0.02 mmol/L respectively, compared to the positive control, Carbendazim, with its EC50 values of 0.74 ± 0.01 mmol/L, 1.78 ± 0.01 mmol/L and 1.41 ± 0.00 mmol/L. Herbicidal activity tests showed that compounds 8-10 had strong inhibitory effects against the roots of Echinochloa crus-galli with EC50 values of 1.16 ± 0.23 mmol/L, 1.28 ± 0.58 mmol/L and 1.33 ± 0.35 mmol/L respectively, more potently active than that of the positive control, Cyanazine, with its EC50 values of 1.56 ± 0.44 mmol/L. However, none of the compounds proved to be active against the tested bacteria (Erwinia carotovora, Pseudomonas syringae, and Ralstonia solanacearum).


Asunto(s)
Fraxinus/química , Fraxinus/metabolismo , Extractos Vegetales/aislamiento & purificación , Antifúngicos/farmacología , Benzopiranos/aislamiento & purificación , Cumarinas/aislamiento & purificación , Glucósidos/aislamiento & purificación , Herbicidas/química , Glucósidos Iridoides , Iridoides/aislamiento & purificación , Quempferoles/aislamiento & purificación , Ácido Linoleico/aislamiento & purificación , Ácidos Linoleicos/aislamiento & purificación , Extractos Vegetales/metabolismo , Raíces de Plantas , Sitoesteroles/aislamiento & purificación , Umbeliferonas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA